1. 拉格朗日恒等式證明柯西不等式
一個(gè)推論,利用拉格朗日恒等式可以證明柯西不等式,好了,下面開(kāi)始給你證明.‘
有一個(gè)適合中學(xué)生的拉格朗日恒等式:
[(a1)^2+(a2)^2][(b1)^2+(b2)^2]=
[(a1)(b1)+(a2)(b2)]^2+[(a2)(b1)-(a1)(b2)]^2
[(a1)^2+(a2)^2+(a3)^2][(b1)^2+(b2)^2+(b3)^2]=
=[(a1)(b1)+(a2)(b2))+(a3)(b3)]^2+[(a2)(b1)-(a1)(b2)]^2+
+[(a3)(b1)-(a1)(b3)]^2+[(a2)(b3)-(a3)(b2)]^2
[(a1)^2+...+(an)^2][(b1)^2+...+(bn)^2]=
=[(a1)(b1)+...+(an)(bn)]^2+[(a2)(b1)-(a1)(b2)]^2+
+[(a3)(b1)-(a1)(b3)]^2+..+[(a(n-1))(bn)-(an)(b(n-1))]^2
.
2. 解析幾何拉格朗日恒等式證明
在數(shù)學(xué)最優(yōu)化問(wèn)題中,拉格朗日乘數(shù)法(以數(shù)學(xué)家約瑟夫·路易斯·拉格朗日命名)是一種尋找變量受一個(gè)或多個(gè)條件所限制的多元函數(shù)的極值的方法。這種方法將一個(gè)有n 個(gè)變量與k 個(gè)約束條件的最優(yōu)化問(wèn)題轉(zhuǎn)換為一個(gè)有n + k個(gè)變量的方程組的極值問(wèn)題,其變量不受任何約束。這種方法引入了一種新的標(biāo)量未知數(shù),即拉格朗日乘數(shù):約束方程的梯度(gradient)的線性組合里每個(gè)矢量的系數(shù)。
引入新變量拉格朗日乘數(shù),即可求解拉格朗日方程
此方法的證明牽涉到偏微分,全微分或鏈法,從而找到能讓設(shè)出的隱函數(shù)的微分為零的未知數(shù)的值。
3. 解析幾何拉格朗日恒等式
設(shè)給定二元函數(shù)z=?(x,y)和附加條件φ(x,y)=0,為尋找z=?(x,y)在附加條件下的極值點(diǎn),先做拉格朗日函數(shù),其中λ為參數(shù)。求L(x,y)對(duì)x和y的一階偏導(dǎo)數(shù),令它們等于零,并與附加條件聯(lián)立,即
L'x(x,y)=?'x(x,y)+λφ'x(x,y)=0,
L'y(x,y)=?'y(x,y)+λφ'y(x,y)=0,
φ(x,y)=0
由上述方程組解出x,y及λ,如此求得的(x,y),就是函數(shù)z=?(x,y)在附加條件φ(x,y)=0下的可能極值點(diǎn)。
4. 怎么證明拉格朗日恒等式
拉格朗日法是描述流體運(yùn)動(dòng)的兩種方法之一,又稱(chēng)隨體法,跟蹤法。
是研究流體各個(gè)質(zhì)點(diǎn)的運(yùn)動(dòng)參數(shù)(位置坐標(biāo)、速度、加速度等)隨時(shí)間的變化規(guī)律。綜合所有流體質(zhì)點(diǎn)運(yùn)動(dòng)參數(shù)的變化,便得到了整個(gè)流體的運(yùn)動(dòng)規(guī)律。
在研究波動(dòng)問(wèn)題時(shí),常用拉格朗日法
5. 拉格朗日恒等式和柯西不等式
拉格朗日定理存在于多個(gè)學(xué)科領(lǐng)域中,分別為:流體力學(xué)中的拉格朗日定理;微積分中的拉格朗日定理;數(shù)論中的拉格朗日定理;群論中的拉格朗日定理。
正壓理想流體在質(zhì)量力有勢(shì)的情況下,如果初始時(shí)刻某部分流體內(nèi)無(wú)渦,則在此之前或以后的任何時(shí)刻中這部分流體皆為無(wú)渦。以某一起始時(shí)刻每個(gè)質(zhì)點(diǎn)的坐標(biāo)位置(a、b、c),作為該質(zhì)點(diǎn)的標(biāo)志。 如果在一個(gè)正整數(shù)的因數(shù)分解式中,沒(méi)有一個(gè)數(shù)有形式如4k+3的質(zhì)數(shù)次方,該正整數(shù)可以表示成兩個(gè)平方數(shù)之和。
6. 拉格朗日定理證明恒等式
拉格朗日定理的意義如下:
1、拉格朗日中值定理是微分中值定理的核心,其他中值定理是拉格朗日中值定理的特殊情況和推廣,它是微分學(xué)應(yīng)用的橋梁,在理論和實(shí)際中具有極高的研究?jī)r(jià)值。
2、幾何意義: 若連續(xù)曲線在 兩點(diǎn)間的每一點(diǎn)處都有不垂直于x軸的切線,則曲線在A,B間至少存在1點(diǎn) ,使得該曲線在P點(diǎn)的切線與割線AB平行。
3、運(yùn)動(dòng)學(xué)意義:對(duì)于曲線運(yùn)動(dòng)在任意一個(gè)運(yùn)動(dòng)過(guò)程中至少存在一個(gè)位置(或一個(gè)時(shí)刻)的瞬時(shí)速率等于這個(gè)過(guò)程中的平均速率。拉格朗日中值定理在柯西的微積分理論系統(tǒng)中占有重要的地位??衫美窭嗜罩兄刀ɡ韺?duì)洛必達(dá)法則進(jìn)行嚴(yán)格的證明,并研究泰勒公式的余項(xiàng)。從柯西起,微分中值定理就成為研究函數(shù)的重要工具和微分學(xué)的重要組成部分。
7. 拉格朗日恒等式的證明
拉格朗日出生在意大利的都靈。由于是長(zhǎng)子,父親一心想讓他學(xué)習(xí)法律,然而,拉格朗日對(duì)法律毫無(wú)興趣,偏偏喜愛(ài)上文學(xué)。
直到16歲時(shí),拉格朗日仍十分偏愛(ài)文學(xué),對(duì)數(shù)學(xué)尚未產(chǎn)生興趣。16歲那年,他偶然讀到一篇介紹牛頓微積分的文章《論分析方法的優(yōu)點(diǎn)》,使他對(duì)牛頓產(chǎn)生了無(wú)限崇拜和敬仰之情,于是,他下決心要成為牛頓式的數(shù)學(xué)家。
在進(jìn)入都靈皇家炮兵學(xué)院學(xué)習(xí)后,拉格朗日開(kāi)始有計(jì)劃地自學(xué)數(shù)學(xué)。由于勤奮刻苦,他的進(jìn)步很快,尚未畢業(yè)就擔(dān)任了該校的數(shù)學(xué)教學(xué)工作。20歲時(shí)就被正式聘任為該校的數(shù)學(xué)副教授。從這一年起,拉格朗日開(kāi)始研究“極大和極小”的問(wèn)題。他采用的是純分析的方法。1758年8月,他把自己的研究方法寫(xiě)信告訴了歐拉,歐拉對(duì)此給予了極高的評(píng)價(jià)。從此,兩位大師開(kāi)始頻繁通信,就在這一來(lái)一往中,誕生了數(shù)學(xué)的一個(gè)新的分支——變分法。
1759年,在歐拉的推薦下,拉格朗日被提名為柏林科學(xué)院的通訊院士。接著,他又當(dāng)選為該院的外國(guó)院士。
1762年,法國(guó)科學(xué)院懸賞征解有關(guān)月球何以自轉(zhuǎn),以及自轉(zhuǎn)時(shí)總是以同一面對(duì)著地球的難題。拉格朗日寫(xiě)出一篇出色的論文,成功地解決了這一問(wèn)題,并獲得了科學(xué)院的大獎(jiǎng)。拉格朗日的名字因此傳遍了整個(gè)歐洲,引起世人的矚目。兩年之后,法國(guó)科學(xué)院又提出了木星的4個(gè)衛(wèi)星和太陽(yáng)之間的攝動(dòng)問(wèn)題的所謂“六體問(wèn)題”。面對(duì)這一難題,拉格朗日毫不畏懼,經(jīng)過(guò)數(shù)個(gè)不眠之夜,他終于用近似解法找到了答案,從而再度獲獎(jiǎng)。這次獲獎(jiǎng),使他贏得了世界性的聲譽(yù)。
1766年,拉格朗日接替歐拉擔(dān)任柏林科學(xué)院物理數(shù)學(xué)所所長(zhǎng)。在擔(dān)任所長(zhǎng)的20年中,拉格朗日發(fā)表了許多論文,并多次獲得法國(guó)科學(xué)院的大獎(jiǎng):1722年,其論文《論三體問(wèn)題》獲獎(jiǎng);1773年,其論文《論月球的長(zhǎng)期方程》再次獲獎(jiǎng);1779年,拉格朗日又因論文《由行星活動(dòng)的試驗(yàn)來(lái)研究彗星的攝動(dòng)理論》而獲得雙倍獎(jiǎng)金。
在柏林科學(xué)院工作期間,拉格朗日對(duì)代數(shù)、數(shù)論、微分方程、變分法和力學(xué)等方面進(jìn)行了廣泛而深入的研究。他最有價(jià)值的貢獻(xiàn)之一是在方程論方面。他的“用代數(shù)運(yùn)算解一般n次方程(n4)是不能的”結(jié)論,可以說(shuō)是伽羅華建立群論的基礎(chǔ)。
8. 利用拉格朗日公式證明不等式
1拉格朗日公式
拉格朗日方程
對(duì)于完整系統(tǒng)用廣義坐標(biāo)表示的動(dòng)力方程,通常系指第二類(lèi)拉格朗日方程,是法國(guó)數(shù)學(xué)家J.-L.拉格朗日首先導(dǎo)出的。通??蓪?xiě)成:
式中T為系統(tǒng)用各廣義坐標(biāo)qj和各廣義速度q'j所表示的動(dòng)能;Qj為對(duì)應(yīng)于qj的廣義力;N(=3n-k)為這完整系統(tǒng)的自由度;n為系統(tǒng)的質(zhì)點(diǎn)數(shù);k為完整約束方程個(gè)數(shù)。
插值公式
線性插值也叫兩點(diǎn)插值,已知函數(shù)y = f(x)在給定互異點(diǎn)x0, x1上的值為y0= f(x0),y1= f(x1)線性插值就是構(gòu)造一個(gè)一次多項(xiàng)式
P1(x) = ax + b
使它滿足條件
P1(x0) = y0P1(x1) = y1
其幾何解釋就是一條直線,通過(guò)已知點(diǎn)A (x0, y0),B(x1, y1)。
9. 能否用拉格朗日定理證明柯西定理
如果函數(shù)f(x)及F(x)滿足:
(1)在閉區(qū)間[a,b]上連續(xù);
(2)在開(kāi)區(qū)間(a,b)內(nèi)可導(dǎo);
(3)對(duì)任一x∈(a,b),F(xiàn)'(x)≠0,
那么在(a,b)內(nèi)至少有一點(diǎn)ζ,使等式
[f(b)-f(a)]/[F(b)-F(a)]=f'(ζ)/F'(ζ)成立。
柯西簡(jiǎn)潔而嚴(yán)格地證明了微積分學(xué)基本定理即牛頓-萊布尼茨公式。他利用定積分嚴(yán)格證明了帶余項(xiàng)的泰勒公式,還用微分與積分中值定理表示曲邊梯形的面積,推導(dǎo)了平面曲線之間圖形的面積、曲面面積和立體體積的公式。
10. 拉格朗日定理證明不等式
拉格朗日定理,數(shù)理科學(xué)術(shù)語(yǔ),存在于多個(gè)學(xué)科領(lǐng)域中,分別為:微積分中的拉格朗日中值定理;數(shù)論中的四平方和定理;群論中的拉格朗日定理 (群論)。拉格朗日定理是群論的定理,利用陪集證明了子群的階一定是有限群G的階的約數(shù)值。
1.定理內(nèi)容
敘述:設(shè)H是有限群G的子群,則H的階整除G的階。
11. 柯西中值定理為什么不能用拉格朗日證明
柯西中值定理是拉格朗日中值定理的推廣,是微分學(xué)的基本定理之一。其幾何意義為,用參數(shù)方程表示的曲線上至少有一點(diǎn),它的切線平行于兩端點(diǎn)所在的弦。該定理可以視作在參數(shù)方程下拉格朗日中值定理的表達(dá)形式。
柯西中值定理粗略地表明,對(duì)于兩個(gè)端點(diǎn)之間的給定平面弧,至少有一個(gè)點(diǎn),使曲線在該點(diǎn)的切線平行于兩端點(diǎn)所在的弦。